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Larraza & Putterman (1984) and Miles (1984b) derived a nonlinear Schrodinger (NLS) 
equation for the envelope r(X, 7) of a spatially and temporally modulated cross-wave 
for which the spatial mean square lY12 vanishes (e.g. a solitary wave). Sasaki (1993) 
found that the accommodation of non-vanishing (e.g. a cnoidal wave) introduces 
a non-local term proportional to v in the coefficient of r in the NLS equation. Sasaki’s 
result is confirmed through an average-Lagrangian formulation, in which the 
functional appears (after appropriate normalization) as the Lagrange multiplier 
associated with the constraint of conservation of mass for the envelope. This functional 
is a constant, and implies a quadratic (in amplitude) shift of the resonant frequency, 
for a periodic = 0) wave; but if the X and 7 dependencies of r are not separable 
it implies the replacement of the NLS equation by a nonlinear integral-partial- 
differential equation. 

1. Introduction 

equation (Larraza & Putterman 1984; Miles 1984b) 
Sasaki (1993) has remarked that the generalized nonlinear Schrodinger (NLS) 

i(rT+ar) +Br,, + (/3+Alrlz) r + yr* = 0 (1.1) 

for the complex amplitude r(X,  7) ( X  and 7 are slow space and time variables, and the 
parameters a, p, A and B are defined in $2 below) of the envelope of a parametrically 
excited, modulated cross-wave implicitly assumes that the spatial mean square 
vanishes (as is true for the solitary waves considered by Larraza & Putterman and 
Miles) and therefore is invalid for the cnoidal-wave solutions in Appendix A of Miles 
(1984b) and in Umeki (1991) or for the kink solutions of Denardo et al. (1990) and 
(although Sasaki does not give this reference) Guthart & Wu (1991). (Pierce & 
Knobloch 1994 find related, non-local effects in the evolution equations for edge 
waves.) Sasaki finds that the coefficient of r in (1.1) comprises an additional term 
proportional to v. If r7 = 0, as for a periodic wave with a stationary envelope, is 
a constant that may be incorporated in p and implies a shift in the resonant frequency.7 
The NLS form also is retained if the X and 7 dependencies of r are separable, but if r 
is both non-local and non-separable (as in the stability analysis of a cnoidal envelope) 
the NLS equation is replaced by a nonlinear, integral-partial-differential equation. 

Sasaki’s result for non-local waves appears to be of sufficient interest to warrant 
an independent derivation through the average-Lagrangian formulation of Miles 
(1984a, b, hereinafter referred to as M84a, b). I sketch such a derivation in $2 and find 

t This result is adumbrated by Larraza & Putterman’s (1984) equation (24), but that result is 
developed in the context of compact support. 
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that is (after appropriate normalization) the Lagrange multiplier associated with 
the conservation-of-mass constraint for the envelope. I then go on, in 9 3 ,  to consider 
periodic waves and correct the cnoidal-wave solution in Appendix A of M84b.  

2. Evolution equations 

breadth b, depth d and length 1 + b that is subjected to the vertical oscillation 
We consider weakly modulated cross-waves induced in a rectangular channel of 

(2.1) 
where w approximates the natural frequency (for gravity waves, but capillarity is 
significant in typical experiments and may be incorporated as in M84a,  b and Miles 
1985) 

of the dominant cross-wave. The velocity potential at the free surface and the 
displacement of that surface (relative to the plane of the level surface), 6 and 7, admit 
the Fourier expansions 

zo = a, cos 2wt (0 < w2a,/g 6 l ) ,  

w1 = (gk tanh kd) l / ,  (k  = n / b )  (2.2) 

00 

(6,  7) = X (6n9 7,) +n(Y), $n = (2-So,)1/2cos nky (0 < .Y < b) ,  (2.3a, b )  
n=O 

where 6, and 7, are canonical variables and So, is the Kronecker delta. The 
assumptions 

w2 - w; = 0(1), y = - w2ao - - 0(1), ( 2 . 4 ~ - c )  ka = 2s1I2 tanh kd, p = ~ 

2 4  % 

where a is an amplitude scale and s is a small parameter, permit the 7, to be posed in 
the form (only n = 0 , 1 , 2  are significant in the present approximation) 

7, = 6,, a (p  cos 8 + q sin 8) + a2k tanh kd(A ,  cos 28 + B, sin 28+ C,), (2.5) 

where 8 = wt and p ,  q, A,,  B, and C, are functions of the slow variables 

T = ewt, X = 2 (e  tanh kd)lj2 kx.  (2.6a, b )  

A ,  = B, = C, = 0, and A,, B, and C, are determined as quadratic functions ofp and 
q in M84a, $3. The evolution equations forp and q are derived in M84b on the implicit 
assumption that JS7’dxdy = 0 (in which sense 7 is local). We now posit the weaker 
constraint 

(2 .7)  

where, here and subsequently, the limits of integration for integrals with respect to x 
and y are (0 , l )  and (0, b) ,  respectively. The corresponding Lagrangian is 

dl = IJqdxdy = bl?,dx = 0, 

where 4 is the velocity potential. The evolution equations for the c, and 7, are 
determined by $2 = 0 (Hamilton’s principle) subject to the constraint (2.7) or, 
equivalently, by 

S ( 2 + h d l )  = 6 (L+hy)dxdy = 0, (2.9) ss 
where h is a Lagrange multiplier (to be determined). 
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Proceeding as in M84b, 53, we invoke (2.9) for the variations dt, and 87, to obtain 

yot = 0, EOt = h-gyo-i(T-2- 1)&, T = tanhkd, (2.1 0 a-c) 

which differ from M84 b (3.11) only in the presence of A. Taking the x and 0 averages, 
which we denote by - and ( ), respectively, of (2. lob), invoking 6 = 0, which follows 
from (2.7), and (tot) = 0, which follows from the requirement that Vt, be bounded as 
t t co (see M84b, 4 3), and introducing r = p + iq and r* = p - iq, we obtain 

(2.1 1 a, b) 

gy, = fCw2a2(v- 1rl2>, (2.124 b) 

The corresponding approximation to (L+hy) ,  calculated as in M84a, b, is, after 
eliminating A, yo and to through (2.11) and (2.12), 

h = Cm = $Cw2a2V, C G i(T-' - l), 

tot = - $ ~ ~ ~ a ~ ( r ~  e-2is+r*2 eZis). 

( L +  h y )  = fegd  [;i(r, r* -IT,*) -B  Jrx12 +p lrI2 +fy(r2 + T * ~ )  

+~Aolr14+f(A-Ao)(I~12-V)2] ,  (2.13) 
where 

A ,  = ;(2T4+3T2+12-9T-'), B E  T+kd(l-T2), (2.14a, b) 
and 

A -A,+i(1-T2)2 =&(6T4-5T2+16-9T-2). (2 .14~)  

- Invoking S ( 2  + AA ) /Sr* = 0 (see the Appendix regarding the variation of [Ir12 - 
lr1']' dx) and introducing linear damping, we obtain 

i(r, + ar) + ~ r , ,  + [p+  A 1 ~ 1 ' -  ( A  --A,) r] r +  yr* = 0, (2.15) 

where a = S / e  and S is the ratio of actual to critical damping for free oscillations. 
- Equation (2.15) is equivalent to Sasaki's (1993) (4.3) and reduces to (1.1) above for 

= 0. Note that A -A, ,  the coefficient of in (2.15), vanishes for kd % 1. 

3. Periodic solutions 

(2.15) may be reduced to 
We now consider periodic (in t )  solutions, for which a, = 0, v is a constant, and 

where 

The solutions of (3.1) are cnoidal waves, including, for 1 t co, the limiting cases of sech 
and tanh solitary waves. The cnoidal-wave solutions given in Appendix A of M84b and 
by Umeki (1991) are based on (1.1) above, which implicitly assumes = 0 and 
therefore is invalid for spatially periodic waves. The corrected solution is given by 

where 
- -  

pk(y2-a2)1/2+A(l -fP) = 0, lrI2 = cn2 = K-' 1 + 4, (3.4a7 b) 

the alternatives in (3.3) and (3.4) are vertically ordered, cn is an elliptic cosine of 
modulus K (the family parameter), K and E are complete elliptic integrals, and (by 
assumption) A > 0. The corresponding snoidal wave may be obtained, on the 
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assumption that A < 0, by replacing cn by sn and A by - A  in (3.3) and 3 by 
2 = 1 -3 in (3.4b). The sech and tanh solutions follow ~ from the cnoidal and snoidal 
solutions, respectively, through the limit K 7 1 ; note that sech' = 0, whereas tanh' = 1 .  

I am indebted to Dr Umeki for bringing Sasaki's paper to my attention. This work 
was supported in part by the Division of Ocean Sciences of the National Science 
Foundation, NSF Grant OCE92-16397, and by the Office of Naval Research Grant 
NO00 14-92-5- 1 17 1 .  

Appendix. Variational calculation 
Introducing q = IY(' in the last term in the Lagrangian density (2.13), we obtain 

(A 1c) 

where (A 1 b, c) follows from (A 1 a) through the interchange of x and 2, and 
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